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Note 

Canonical Transformation invariance 
and Linear Multistep Formula 

for Integration of Hamiltonian Systems 

It is shown that, if a linear multistep formula applied to numerical integration of 
hamiltonian systems is also to be a canonical transformation, it must essentially be a two-term 
formula. ‘(.‘ 1985 Academic Press. Inc. 

In numerical integration of dynamical systems it is useful to confirm various 
invariance properties. Although it is not always necessary that an integration for- 
mula itself has invariance properties, it will be interesting to find conditions that the 
formula must satisfy in order to have these properties. In a recent note [l] we 
found conditions under which a linear multistep formula is invariant under time 
reversal transformation. In this note we shall examine under what conditions a 
linear multistep formula, when applied to integration of hamiltonian systems, is to 
be a canonical transformation. 

A hamiltonian system is described by canonical coordinates q’,..., q/ and con- 
jugate momenta p’,..., pf. It is convenient to regard these variables as a vector 
J* = ( Jam’ f = {q’, p’} in the 2f-dimensional phase space. With a hamiltonian function 
H(J) = H(q, p) the equations of motion are written in the form 

+ldt = f( .I’ ), (1) 

f(y)= {f”(y))= {?H/c?p’, -dH/dq’). (2) 

Let a solution of these equations be y( t j = y( t; J’,,, to), where yO is an initial value of 
y at a time t,. This solution can be regarded as a transformation from yO to y(t). It 
is called a canonical transformation if it satisfies the following condition: Let two 
infinitesimal variations of yO be 6~~ and S’JJ,, and their time developments be 6~ 
and 6’~, respectively. Then a normalized skew-symmetric bilinear form made with 
~$9 and 6’~l 

[dyh’y] = f: (6q’S’p’-ispp’6’q’)= (dy)V(cyv) 
i= I 

(3) 

must be constant in time. Here the superscript T means the transposition and J is a 
2fx ?f matrix J= (-7 A). 
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The equations for 6y and 6’~ are derived from Eq. (1) as 

d( 6y )/dt = F 6y and d(6’y )/dt = F 6’y, 

where F is a 2fx 2f matrix: 

8 2HjcYpi 84’ S2H/iYpi c?p’ 
- a*Hjaqi aqj > - a*H/aqi apj . (4) 

Here the superscripts i and j indicate rows and columns, respectively, of four f x.f 
matrices. Then it can easily be shown that the expression (3) is constant in time, 
since 

FTJ+JF=O. (5) 

Now we shall show that if a linear one-step formula applied to a hamiltonian 
system is regarded as a transformation, the formula is a canonical transformation. 
Let the formula to compute yn+, from !I,, be written in the form 

(6) 

where h is a step size, y,, the value of y at t = to + nk, and yn+, has a similar 
meaning, f, = f( yn) and fn + , = f( y,, + , ), and /? is a constant with 0 < p < 1. For 
infinitesimal variations we have 

6) II+1 -s~,=h{BF,+,~.,,,+,+(1-8)F,~~,}, 

where F,, is a matrix F given by Eq. (4) with y = yn. From this equation we find 
6Y n+, to the first order of h 

6J nt,=Cl+h(BF,+,+(l-p)F,)l6?),. 

Hence, 

Lb,+, b’r’n.1 I= (hJ’CJ+ htPU?+ ,J+JF,+ ,) 
+ (1 -PWY+JF,)II d’~,, 

= [Sy, S’yJ. 

In the last step Eq. (5) is used. We note that this proof is a discrete version of the 
proof for constancy in time of the expression (3). 

Next we consider the case of a general linear multistep formula to compute J,,+~ 
from yn,..., ~1~ + k ~, . The formula is written in the form 

P(E) Yn = W)fm (7) 

where E is an operator increasing the subscript n by one, p(i) = C$=, a,[’ (CQ = l), 
and o(i) = Z.lzO fiSi” ((c(,,I + I&I # 0). The convergence condition for formula (7) is 
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that it is both consistent and zero-stable (see Henrici [Z, Chap. 51 and Lambert 
[3] ). The consistency means 

p(l)=& (8) 

p’(l)=a(l). (9) 

The zero-stability requires that the roots of the polynomial p(i) all lie within or on 
the unit circle, those one the unit circle being simple. Thus 

P’(i,)ZO for Iill = 1. (10) 

Now we shall find under what conditions this linear multistep formula is to be a 
canonical transformation. From Eq. (7) we get a multistep formula for infinitesimal 
variations JJ 

From this equation we get Sy,, +k to the first order of h 

b,L n+it=C’ ‘I-a.~+h(-a,P,F,+,+/J,F,+.)} d.l?n+sr 

where C’ means summation over s from 0 to k - 1. We assume that transformations 
from 6~, to &~~+i,..., from &y??n+k-2 to 6~, + k _ , are all canonical transformations. 
Then all normalized skew-symmetric bilinear forms for Sy, ,..., by4’n + k ~ , are equal to 
each other, and are put equal to I: 

[Sy,S’y,]= ‘.. =[Gyn+k--16:,+k-,]=Z. (11) 

Now we calculate [6y,+, 6’~~+~ ] and put it equal to I. After some algebra we 
obtain 

z= C’a,’ I+ C’C’a,a,,(6y,+.)TJ6’y~++,, 
( 1 Y z 1’ 
- h C’C’(sl,,+.)‘(a,,BsM,+,-a,Br,~,+.,)6’~,+*,, (12) 

S#S’ 

where the 2f x 2f matrix M,+, is given by 

A4 n+s=C+sJ= 
a2hyaqiaqj aW/aqiapJ 
a2Hlapiaqj a2fqapi apj > y=v,+, 

Here the superscripts i and j have the same meaning as in Eq. (4). Equation (12) 
must hold to every order of h. Also it must hold for any dynamical system. In par- 
ticular, for a free particle system the matrix M reduces to M’ = (,” 7). where we 
assume the mass of each particle is one. Then, we have 
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z= C’af z+ 
( ) 

C’C’C(sas’(G~n+s)TJ6’~n+s,, 
s z s’ 

C’C’ (as.P,-cc,B,,)(GY,+,)TM’ d’Yn+d=O. 
S#J’ 

These equations must hold for any values of 6yn + s and 6/y,+ sI which satisfy 
Eq. (11). Using Lagrange’s method of undetermined multipliers, we obtain 

1’ rxf = 1, (13) 

c(,c(,. = 0 for O<s<s’<k, (14) 

cfs. /Is = as/IS, for O<s<s’<k. (15) 

As Eq. (8) means 1 + C’ c(, = 0, there is at least one CQ #O for s = 1. As Eq. (14) 
implies a, = 0 for s # f, a[ = - 1 is the only CI, which is not zero. These a,‘s satisfy Eq. 
(13). Equation (15) implies /I, = 0 except s = 1. Thus the polynomial p(c) has only 
two, and the polynomial o(c) has at most two terms different from zero: 

P(i) = ik - i’, (16) 

and Eq. (9) gives 

o(i) = fikik + 8,?> 

flk+fl,=k-f. 

(17) 

Also Eq. (16) satisfies Eq. (10). Hence we get the following theorem. 

THEOREM. Zf a linear multistep formula Eq. (7) is convergent and is further a 
canonical transformation, it must be a two-term formula as Eq. (16) and Eq. (17). 

Finally, we shall make three remarks: 
First, as for higher-order invariant forms such as the 2f-dimensional volume 

element in the phase space, we note that invariance of these forms can be derived 
from that of the normalized skew-symmetric bilinear form Eq. (3) (see, for example, 
Weyl [4, Chap. 63). 

Second, if the formula Eq. (7) is convergent, is a canonical transformation, and is 
further invariant under time reversal transformation, it must be a one-step formula 
as given by Eq. (6) (Aizu Cl]). 

Third, in practical computations a two-term formula may not give highly 
accurate results. If a non-invariant formula in current use gives good results to 
invariant quantities, we must examine why such a non-invariant formula gives good 
results. 
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